[email protected]

Opening Hours

Mon - Fri: 7AM - 7PM

Showing: 1 - 1 of 1 RESULTS

Corn and other important crops can now be gene edited by pollen

first_img Email Syngenta researcher Shujie Dong isolates corn embryos to genome edit them with CRISPR. J. Cohen/Science Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Click to view the privacy policy. Required fields are indicated by an asterisk (*) Sign up for our daily newsletter Get more great content like this delivered right to you! Countrycenter_img By Jon CohenMar. 4, 2019 , 11:00 AM The genome editor CRISPR has transformed many areas of biology, but using this tool to enhance certain varieties of crops such as wheat and corn remains difficult because of the plants’ tough cell walls. Now, a major agricultural company has creatively solved that problem by using pollen from one genetically modified plant to carry CRISPR’s components into another plant’s cells. The solution promises to speed the creation of better and more versatile crops, scientists say.In its initial experiments, the company has edited varieties of corn to have more or heavier kernels, which could make them higher yielding. “Nice!” says Daniel Voytas, a plant biologist at the University of Minnesota in St. Paul who helped invent a different genome editor and co-founded another company to exploit it. “It’s exciting that an increasing number of research groups—both in academia and industry—are thinking of new ways to deliver gene-editing [components] and to efficiently recover gene-edited plants.”CRISPR consists of enzymatic scissors called Cas9 that a guide made from RNA shuttles to an exact place in a genome. Because plant cells have an extra-rigid wall compared with animal cells, it’s more difficult for CRISPR’s Cas9 and the guide RNA (gRNA) to reach their genomes and make edits. So researchers have had to splice those CRISPR genes into a bacterium that can breach the plant cell wall or put them on gold particles and shoot them in with what’s known as a gene gun. Not only is this inelegant, it also doesn’t work in many plant species, including important crop varieties. Corn and other important crops can now be gene edited by pollen carrying CRISPR A team of researchers led by plant biologists Timothy Kelliher and Qiudeng Que of Syngenta in Durham, North Carolina, fashioned a way around this problem by exploiting an odd phenomenon known as haploid induction, which allows pollen to fertilize plants without permanently transferring “male” genetic material to offspring. The newly created plants only have a female set of chromosomes—making them haploid instead of the traditional diploid. Haploid induction by itself can lead to increased breeding efficiency and higher yielding plants.Syngenta initially took advantage of a corn line that can be transformed with CRISPR with relative ease using the bacteria or gene gun technology, and that has a crippled version of a gene, MATRILINEAL, making its pollen able to trigger haploid induction. The researchers transformed this corn line with a gRNA/Cas9 combinations programmed to target genes related to different desirable traits. The pollen of these transformed plants could then spread the gRNA and Cas9 editing machinery to other corn varieties that had been recalcitrant to CRISPR.“The key innovation is using haploid inducer pollen as a sort of Trojan Horse,” says Kelliher, whose Syngenta-led team describes the system today in Nature Biotechnology. There is also some evidence, they say, that the CRISPR-carrying corn pollen can edit the DNA of wheat. The researchers further devised a second CRISPR system for Arabidopsis, a genus of plants related to cabbage, broccoli, kale, and cauliflower.“It is a brilliant piece of work,” says plant biologist Luca Comai at the University of California, Davis. “It is imaginative by combining two technologies: haploid induction and genome editing.” (Comai notes his lab has received small amounts of funding from Syngenta.)This haploid induction-edit (HI-edit), as Syngenta calls the CRISPR pollen method, has only been done so far in laboratories. But scientists say that if it were done in the field, the changes wouldn’t spread because the male genome in the pollen—which carries the CRISPR apparatus—disappears shortly after fertilization. “The CRISPR machinery gets lost—it’s transient delivery,” Que says. And because the method doesn’t involve putting the CRISPR genes into the DNA of the resulting crops, they likely wouldn’t qualify as genetically modified under current U.S. regulations, making it easier to obtain regulatory approval for selling the crops.Plant researcher Gao Caixia at the Chinese Academy of Sciences in Beijing says HI-edit will be especially useful in high-yielding commercial varieties of corn known as elites. “Corn is so important,” Gao says. “All the companies are working on it, and every year there are so many new varieties. And to deliver CRISPR to a new variety is not an easy job.”Gao notes there are other ways to improve CRISPR’s success in recalcitrant plants, including a technology described 2 years ago by DuPont Pioneer researchers that overexpresses two genes that affect early embryo development. “So [HI-edit] is not the only solution, but it’s a smart one,” Gao says.last_img read more